История телескопов. Инквизиция наступает Какой телескоп был изобретен в 1610 году

История телескопов. Инквизиция наступает Какой телескоп был изобретен в 1610 году

МОУ Озёрская СОШ

«История создания телескопа»

Исполнитель: Плохотнюк Алёна,

учащаяся 10 класс

Учитель-консультант: Фомичёва Е. В.

2009 -2010 уч. Год

1. Введение……………………………………………………………..3стр.

2. История первых телескопов:

2.1. Открытие детей мастера Липперсгея………………………3-4стр.

2.2. «Телескопическая лихорадка»………………………………..4стр.

2.3. Телескопы братьев Гюйгенс………………………………….5стр.

2.4. Телескопы Галилея…………………………………………5-6стр.

3. Назначение телескопов…………………………………………..6-7стр.

4. Виды телескопов:

4.1. Телескоп-рефрактор………………………………………….7стр.

4.2. Телескоп-рефлектор………………………………………….7стр.

4.3. Менисковый телескоп. ………...…………………………….7стр.

5. Возможности современных телескопов:

5.1. Телескоп без глаза…………………………………………....8стр.

5.2. Радиотелескопы……………………………………………8-9стр.

5.3. Инфракрасные телескопы……………………………………9стр.

5.4. Ультрафиолетовые телескопы…………………………….....9стр.

5.5. Рентгеновский телескоп………………………………………9стр.

5.6. Гамма-телескопы…………………………………………….10стр.

6. Примеры телескопов…………………………………………..10-11стр.

7. Космический телескоп………………………………………...11-12стр.

8. Заключение……………………………………………………..…12стр.

9. Приложение……………………………………………………13-14стр.

10. Список используемой литературы……………………………..15стр.

“Унося наши чувства далеко за границы воображения

наших предков, эти замечательные инструменты,

телескопы, открывают путь к более глубокому

и более прекрасному пониманию природы”
Рене Декарт, 1637г.

1. Введение

Небо существует только для человека и только в его мыслях. Ведь небо есть не что иное, как картина космоса, наблюдаемая человеком с его крохотного обиталища – Земли. Представления людей о звёздном мире меняются из года в год. О космосе невозможно сказать, что он уже познан, ведь в нем столько тайн, столько самых невероятных событий…

Иногда, глядя в небо, я задумывалась над тем, как же могли еще в старину, глядя на, казалось бы, не подвижное, почти не меняющееся небо, делать открытия, находить новые планеты, определять траектории движения планет, одним словом, «разгадывать» тайны Вселенной. Ведь далеко не все можно увидеть невооруженным глазом. Заинтересовавшись этой проблемой, я выяснила, что первым астрономическим прибором был телескоп. За прошедшие века он совершенствовался и изменялся. Какой восторг вызвал у обывателей и учёных мужей первый телескоп! Какие невероятные открытия за этим последовали! Но с годами телескоп не утратил своей значимости. Именно поэтому мне захотелось узнать, каким же был первый телескоп, кто был его первооткрывателем и какими возможностями обладает современный телескоп? И вот какие «открытия» я для себя сделала…

2. История первых телескопов:

2.1. Открытие детей мастера Липперсгея

В самом начале XVII столетия жил в голландском городе Миддельбурге оптик Липперсгей. (Приложение №1) Обыкновенный ремесленник, мастер по изготовлению очковых стекол. Однажды сынишка Липперсгея сидел дома. Чтобы развлечься, мальчуган вытащил на подоконник целый ворох отшлифованных испорченных очковых стекол и стал складывать их, заглядывая поочередно в получившиеся сочетания. Он рассматривал мух. Зажимая линзы в кулаках, подносил их к глазам. Потом он взял в каждую руку по стеклу и приставил оба кулака к одному глазу одновременно,… Что тут произошло! Мальчик закричал, бросил стекла, закрыл глаза руками и убежал в глубину комнаты. Ему показалось, что башня ратуши, на которую он посмотрел через две линзы, шагнула ему на встречу. Это было похоже на колдовство.

Прошло несколько дней – Липперсгей явился магистрат. В руках у мастера была свинцовая трубка со вставленными в неё линзами. Этот удивительный снаряд позволял созерцать отдаленные предметы так, как если бы они находились совсем рядом. Липперсгей предложил продать городским властям «свое изобретение». Миддельбургские купцы охотно глядели в трубку, размахивали широкими рукавами, но признать автором изобретения Липперсгея отказывались. Липперсгей много раз пытался запатентовать и продать трубку то голландским Генеральным штатам, то принцу Морицу Оранскому. Однако патента так и не получил. Скоро в соседних городах объявились и другие оптики, претендующие на честь изобретения зрительной трубки. Слухи о голландском изобретении покатилось по всей Европе, обрастая невероятными подробностями и искажениями.

2.2. «Телескопическая лихорадка»

В середине XVII века «телескопическая лихорадка» захватила всех. В городах линзы шлифовали в домах ремесленников и купцов, дворян и вельмож. Изготовление телескопов стало модным. А наблюдение неба – просто необходимым занятием каждого более или менее образованного человека. Теперь люди могли не просто следить за перемещением по небу блуждающих звезд, но и рассматривать подробности строения Луны, наблюдать планеты вместе со спутниками. Правда, первое время такие исследования требовали от наблюдателя массы усилий. Плохое качество шлифованных линз давало вместо светящейся точки мутное расплывчатое пятно, окруженное вдобавок цветным ореолом. (Приложения №2-7)

2.3. Телескопы братьев Гюйгенс

Главной задачей стало получение телескопов с большим увеличением. В середине XVII столетия шлифовкой линз и устройством телескопов увлекся сын богатого голландца Христиан Гюйгенс. Будучи совсем молодым человеком, он теоретически нашел наилучшую форму линз. Получалось, что для уменьшения искажений кривизна поверхности одной линзы должна быть в шесть раз меньше, чем у другой. Но вот беда: оптика в то время ещё не научились шлифовать линзы с заданной кривизной.

Выход оставался один: собирать телескопы из большого количества слабых, но дающих хорошее изображение линз. Так появились первые длинные телескопы.

Первый инструмент, который построил Христиан Гюйгенс вместе с братом, имел 12 футов в длину. Это примерно три с половиной метра. А отверстие его было всего 57 миллиметров. То есть в шестьдесят раз меньше длины.

Гюйгенс с его помощью открывает спутник Сатурна. Кроме того, он смутно видит у планеты те же странные выступы по бокам. Чтобы разглядеть загадочные образования у Сатурна, братья Гюйгенсы берутся за постройку еще более длиннофокусного телескопа. Его размеры должны быть 23 фута. Такую длинную трубу уже трудно подвешивать к столбам, ещё труднее её поворачивать и наводить. На Гюйгенс не сдаётся и в конце концов открывает кольцо Сатурна. Скоро, чтобы облегчить конструкцию телескопа, вместо труб стали делать легкие рамы из деревянных планок. На рамках укрепляли объектив и окуляр, а в промежутке ставили диафрагмы.

Длина телескопа продолжается расти. Она достигла сначала 20, потом 30, даже 40 и более метров. Пришлось отказаться от рам. Объектив в небольшой оправе укрепляли на крыше здания или на специальной вышке. Наблюдатель же, с окуляром в руках, старался расположиться так, чтобы желаемое светило оказалось в створе с объективом и окуляром.

2.4. Телескопы Галилея.
В 1609, узнав об изобретении голландскими оптиками зрительной трубы, Галилей (Приложение №8) самостоятельно изготовил телескоп с плосковыпуклым объективом и плосковогнутым окуляром, который давал трехкратное увеличение. Через некоторое время им были изготовлены телескопы с 8- и 30-кратным увеличением.(приложение №4) В 1609, начав наблюдения с помощью телескопа, Галилей обнаружил на Луне темные пятна, названные им морями, горы и горные цепи. 7 января 1610 открыл четыре спутника планеты Юпитер, установил, что Млечный Путь является скоплением звезд.

После того как утихли первые восторги по поводу новых возможностей, открытых телескопами, наблюдатели всерьёз задумались над качеством изображения. Все открытия, «лежавшие на поверхности», были уже сделаны, и люди видели, люди понимали, что для дальнейшего проникновения в тайны неба Земли нужно улучшать инструменты.

Первым приемником изображений в телескопе, изобретенным Галилеем в 1609 году, был глаз наблюдателя. С тех пор не только увеличились размеры телескопов, но и принципиально изменились приемники изображения. В начале ХХ века в астрономии стали употребляться фотопластинки, чувствительные в различных областях спектра. Затем были изобретены фотоэлектронные умножители (ФЭУ), электронно-оптические преобразователи (ЭОП). (Приложения №9-10)
3. Назначение телескопов

Какими бы ни были конструкции телескопов, у них есть общие черты. Назначение всех телескопов заключатся в увеличении угла зрения, под которым видны небесные тела. Телескоп собирает во много раз больше света, приходящего от небесного светила, чем глаз человека. Благодаря этому в телескоп можно рассматривать не видимые невооруженным глазом детали поверхности ближайших в Земле небесных тел и увидеть множество слабых звезд.

Основная задача телескопа, как и любого оптического прибора, максимально четко и детально передать наблюдателю то, что он хочет увидеть. Само слово телескоп, имеет греческое происхождение, что в дословном переводе означает "далеко видеть".

Эволюция параметров оптических телескопов.

Можно смело утверждать, что наблюдение за звёздами возникло одновременно с появлением человека. Звёздам давали названия –их объединяли в созвездия и составляли каталоги звёздного неба.
В течении многих тысячелетий главным инструментом наблюдения звёздного неба был простой человеческий глаз, или, как его принято называть невооружённый глаз. Он, кстати, способен видеть на небе ни много ни мало около 6000 звёзд.

История оптики также берёт начало в древности, например, линза, изготовленная из горного хрусталя, была найдена в развалинах древней Трои. Впрочем, древние греки использовали увеличительные стёкла и для иных целей – с их помощью можно было получить огонь, который считался чистым и использовался в религиозных ритуалах.
Изучение законов оптики продолжили арабские, а затем и европейские мыслители. В 13 веке в Европе были изобретены очки. Тогда же, в 13 веке, английский учёный, монах-францисканец Роджер Бэкон, заговорил о телескопе. Правда. Рассуждал он в своеобразном пророческом стиле:

«Расскажу о дивных делах природы искусства, в которых нет ничего магического. Прозрачные тела могут быть так обделаны, что отдалённые предметы покажутся приближенными и наоборот, так что на невероятном расстоянии будем читать малейшие буквы и различать малейшие вещи, а также будем в состоянии усматривать звёзды как пожелаем».

За высказывание своих мыслей его посадили в тюрьму. Должно было ещё пройти несколько веков, прежде чем научная фантазия Бэкона воплотилась в реальность. Однако рисунок простейшего однолинзового телескопа встречается уже в рукописях Леонардо Да Винчи, а рядом с рисунком дан такой поясняющий текст:
«Чем дальше отодвигаешь ты стекло от глаза, тем большими покажет оно предметы для глаз. Если глаза для сравнения глядят один через очковое стекло, другой вне его, то для одного предмет покажется большим, для другого – малым. Но для этого видимые вещи должны быть удалены от глаза на двести локтей.»
И вот в начале 17-го века в Голландии сразу три человека почти одновременно заявили об изобретении ими зрительной трубы. Иоганн Липерсхэй, Якоб Мециус и Захария Янссен. Возможно, назадолго до этого подзорная труба уже была изобретена каким-то неизвестным умельцем, скорее всего итальянцем, а эти голландцы пытались получить патент на неё. Второго октября 1608 года Иоганн Липерсхэй представил Генеральным Штатам Нидерландов инструмент для видения на расстоянии. Ему было выдано 800 флоринов на улучшение инструмента, но в патенте на изобретение было отказано, поскольку к тому времени подобными инструментами обладали и Захария Янссен, и Якоб Мециус.

Телескоп Галилея

Весть об изобретении и существовании зрительной трубы дошла до Галилео Галилея. В вышедшем в 1610 году «Звёздном вестнике» он писал:

«Месяцев десять тому назад дошёл до наших ушей слух, что некий бельгиец построил перспициллюм, при помощи которого видимые предметы, далеко расположенные от глаз, становятся отчётливо различимыми, как будто бы они были близки. После этого я разработал более точную трубу, которая представляла предметы увеличенными больше, чем в 60 раз. Засим, не жалея никакого труда и никаких средств, я достиг того, что построил себе орган настолько превосходный, что вещи при взгляде через него казались почти в тысячу раз крупнее и боле чем в тридцать раз приближенными, чем при рассматривании при использовании естественных способностей».

Таким образом Галилей создал телескопическую систему из двух линз – одной выпуклой и другой вогнутой. И вот что примечательно – если для многих современников Галилея зрительная труба была одним из чудес натуральной магии вроде камеры-обскуры или магических зеркал, то сам Галилей сразу же понял, что новый инструмент будет необходим для практических нужд –морехождения, военного дела или астрономии.
В ночь с 6 на 7 января 1610 года Галилей навёл на небосвод созданный им телескоп с трёхкратным увеличением. Этот день, считающийся официальной датой начала астрономии как таковой, изменил имевшиеся на тот момент человеческие знания о космосе. Похоже, что никогда больше в истории астрономии человек не совершал столько открытий за один раз, сколько было сделано их тогда. Луна оказалась испещрённой горами и кратерами, и была похожа на пустыню на Земле, Юпитер предстал перед взором Галилея крошечным диском, вокруг которого обращались четыре разные звёздочки –его естественные спутники, и даже на самом Солнце Галилей потом увидел пятна, опровергнув тем самым общепринятые учения Аристотеля о неприкосновенной чистоте небес.

Действительно, наблюдения Галилея опровергли в целом доктрину о противоположности земного и небесного. Земля оказалась телом той же природы, что и небесные светила. Это, в свою очередь, служило доводом в пользу системы Коперника, в которой Земля совершала движение также, как и другие планеты. Итак, после ночных бдений Галилея, представления человека о вселенной должны были радикально измениться.
Собственно, изобрёл Галилей телескоп-рефрактор, то есть тот оптический прибор, в котором в качестве объектива используется линза или система линз. Первые такие телескопы давали очень нечёткое изображение, окрашенное радужным ореолом. Рефракторы были усовершенствованы современником Галилея Иоганном Кеплером, который разработал систему астрономической трубы с двояко выпуклым объективом трубы и окуляром, а в 1667 году Ньютон предложил другой тип оптического телескопа – рефлектор. В качестве объектива в нём использовались уже не линзы, а вогнутые зеркала. Рефлектор позволили окончательно избавиться от основного недостатка рефракторов – эффекта хроматической оберрации, который разлагает белый цвет на составляющий его спектр, и мешает видеть картину как она есть. Телескоп очень быстро стал привычной и незаменимой вещью для многих европейских учёных.

Одновременно с домашними телескопами делали и огромные длиннофокусные аппараты. Так, например, польский астроном и пивовар 17-го века Ян Гивелий разработал телескоп длиной в сорок пять метров, а голландец Христиан Гюйгенс пользовался телескопом длиной в 64 метра. Своеобразный рекорд поставил Адриен Озу, который в 1664 году соорудил телескоп длиной в 98 метров.
До двадцатого века принципиально ничего нового в способах разглядывания вселенной сказано не было. Пока человек не преодолел новый рубеж и не начал штамповать радиотелескопы. Но это уже начало другой истории…

Гавайские острова, вершина горы Мауна-Кеа, 4145 метров над уровнем моря. Для пребывания на такой высоте требуется акклиматизация. На фоне меркнущей вечерней зари четкими силуэтами выделяются два огромных сферических купола. На одном из них медленно поднимается белое «забрало» шириной с трехполосное шоссе. Внутри - темнота. Вдруг прямо оттуда вверх бьет лазерный луч и зажигает в темнеющем небе искусственную звезду. Это включилась система адаптивной оптики на 10-метровом телескопе Кека. Она позволяет ему не чувствовать атмосферных помех и работать так, словно он находится в открытом космосе...

Впечатляющая картина? Увы, на самом деле если вы случайно окажетесь рядом, то не заметите ничего особенно эффектного. Луч лазера виден лишь на снимках с длительной экспозицией - 15-20 минут. Это в фантастических фильмах бластеры стреляют ослепительными лучами. А в чистом горном воздухе, где почти нет пыли, лазерному лучу не на чем рассеиваться, и он незамеченным пронизывает тропосферу и стратосферу. Лишь у самой границы космического пространства, на высоте 95 километров, он неожиданно встречает препятствие. Здесь, в мезосфере, есть 5-километровый слой с повышенным содержанием электрически нейтральных атомов натрия. Лазер как раз настроен на их линию поглощения, 589 нанометров. Возбужденные атомы начинают светиться желтым цветом, хорошо знакомым по уличному освещению больших городов, - это и есть искусственная звезда.

Ее тоже не видно простым глазом. При звездной величине 9,5m она в 20 раз слабее нашего порога восприятия. Но по сравнению с человеческим глазом телескоп Кека собирает в 2 миллиона раз больше света, и для него это ярчайшее светило. Среди триллионов видимых ему галактик и звезд столь ярких объектов лишь сотни тысяч. По виду искусственной звезды специальная аппаратура выявляет и корректирует искажения, вносимые земной атмосферой. Для этого служит особое гибкое зеркало, от которого по пути к приемнику излучения отражается собранный телескопом свет. По командам компьютера его форма меняется сотни раз в секунду, фактически синхронно с флуктуациями атмосферы. И хотя подвижки не превышают нескольких микрон, их достаточно для компенсации искажений. Звезды для телескопа перестают мерцать.

Такая адаптивная оптика, на ходу приспосабливающаяся к условиям наблюдений, - одно из последних достижений телескопостроения. Без нее рост диаметра телескопов свыше 1-2 метров не увеличивает числа различимых деталей космических объектов: мешает дрожание земной атмосферы. Орбитальный телескоп Хаббла, запущенный в 1991 году, несмотря на скромный диаметр (2,4 метра), получил удивительные снимки космоса и совершил множество открытий как раз потому, что не испытывал атмосферных помех.
Но «Хаббл» стоил миллиарды долларов - в тысячи раз дороже адаптивной оптики для куда более крупного наземного телескопа. Вся дальнейшая история телескопостроения являет собой непрерывную гонку за размерами: чем больше диаметр объектива, тем больше света слабых объектов он собирает и тем мельче детали, которые можно в них различить.

КАК БЫЛ ИЗОБРЕТЕН ТЕЛЕСКОП

Часто говорят, что Галилей изобрел телескоп. Но хорошо документировано появление зрительной трубы в Голландии за год до работ Галилея. Нередко можно слышать, что Галилей первым использовал трубу для астрономических наблюдений. И это тоже неверно. Однако анализ хронологии полутора лет (от появления зрительной трубы до публикации Галилеем своих открытий) показывает, что он был первым телескопо-строителем, то есть первым создал оптический прибор специально для астрономических наблюдений (и разработал технологию шлифовки линз для него), и случилось это 400 лет назад, в конце осени 1609 года. И, конечно, Галилею принадлежит честь первых открытий с помощью нового инструмента.
АВГУСТ - СЕНТЯБРЬ 1608
На Франкфуртской ярмарке некий голландец (возможно, это был Захариас Янсен) пытается продать германскому аристократу Хансу Филиппу Фуксу фон Бимбаху зрительную трубу. Не купив ее из-за трещины в линзе, фон Бимбах сообщает об устройстве своему другу, немецкому астроному Симону Мариусу. Тот пытается воспроизвести инструмент по описанию, но терпит неудачу из-за низкого качества линз.
25-30 СЕНТЯБРЯ 1608
Голландский мастер Ханс Липперсхей из Мидделбурга прибывает в Гаагу для демонстрации своего изобретения - устройства, «при помощи которого далекие предметы видны так, будто находятся рядом». В это время в Гааге идут сложные переговоры между Голландской Республикой, Испанией и Францией. Главы всех делегаций сразу понимают военное значение изобретения. Печатное сообщение о нем широко распространяется.
2 ОКТЯБРЯ 1608
Голландский парламент требует прибор для независимой проверки. Обсуждается, выдать ли изобретателю тридцатилетний патент или назначить пенсию. Специальная комиссия предлагает усовершенствовать прибор, чтобы смотреть в него двумя глазами, на что Липперсхею выделяют 300 флоринов с условием сохранить устройство прибора втайне.

КАК БЫЛ ИЗОБРЕТЕН ТЕЛЕСКОП


Правда, адаптивная оптика способна компенсировать атмосферные искажения лишь рядом с яркой опорной звездой. Первое время это сильно ограничивало применение метода - таких звезд на небе немного. Искусственную «натриевую» звезду, которую можно поместить рядом с любым небесным объектом, теоретики придумали только в 1985 году. Чуть больше года понадобилось астрономам, чтобы собрать аппаратуру и опробовать новую методику на небольших телескопах обсерватории Мауна-Кеа. А когда результаты были опубликованы, выяснилось, что американское министерство обороны ведет такие же исследования под грифом «совершенно секретно». Пришлось военным раскрывать свои наработки, правда, сделали они это лишь на пятый год после экспериментов в обсерватории Мауна-Кеа.
Появление адаптивной оптики - одно из последних крупных событий в истории телескопостроения, и оно как нельзя лучше иллюстрирует характерную черту этой сферы деятельности: ключевые достижения, кардинально менявшие возможности инструментов, часто бывали внешне малозаметны.

ЦВЕТНЫЕ КАЕМКИ


Ровно 400 лет назад, осенью 1609 года, профессор Падуанского университета Галилео Галилей проводил все свободное время за шлифовкой линз. Узнав об изобретенной в Голландии «волшебной трубе», нехитром устройстве из двух линз, позволяющем втрое приближать далекие объекты, он всего за несколько месяцев радикально усовершенствовал оптическое приспособление. Подзорные трубы голландских мастеров делались из очковых стекол, имели диаметр 2-3 сантиметра и давали увеличение в 3-6 раз. Галилей же добился 20-кратного увеличения при вдвое большей светособирающей площади объектива. Для этого ему пришлось разработать собственную технологию шлифовки линз, которую он долго держал в секрете, чтобы конкуренты не собрали урожай открытий, делавшихся с помощью нового замечательного инструмента: лунные кратеры и солнечные пятна, спутники Юпитера и кольца Сатурна, фазы Венеры и звезды Млечного Пути.

Но даже у лучшего из телескопов Галилея диаметр объектива составлял всего 37 миллиметров, и при фокусном расстоянии 980 миллиметров он давал очень бледное изображение. Это не мешало наблюдать Луну, планеты и звездные скопления, но увидеть в него туманности было затруднительно. Увеличить светосилу не позволяла хроматическая аберрация. Лучи разного цвета по-разному преломляются в стекле и фокусируются на разных расстояниях от объектива, отчего изображения объектов, построенные простой линзой, всегда окрашены по краям и тем сильнее, чем резче преломляются лучи в объективе. Поэтому с увеличением диаметра объектива астрономам приходилось увеличивать и его фокусное расстояние, а значит, длину телескопа. Предела разумного достиг польский астроном Ян Гевелий, построивший в начале 1670-х годов гигантский инструмент длиной 45 метров. Объектив и окуляр крепились к составным деревянным доскам, которые на канатах подвешивались на вертикальной мачте. Конструкция шаталась и вибрировала от ветра. Наводить ее на объект помогал ассистент-матрос, имевший опыт работы с корабельными снастями. Чтобы не отставать от суточного вращения неба и следить за выбранной звездой, наблюдатель должен был со скоростью 10 см/мин поворачивать свой конец телескопа. А на другом его конце стоял объектив диаметром всего 20 сантиметров. Еще немного дальше по пути гигантизма продвинулся Гюйгенс. В 1686 году он устанавливал объектив диаметром 22 сантиметра на высоком столбе, а сам располагался в 65 метрах позади него на земле и рассматривал построенное в воздухе изображение через окуляр, укрепленный на штативе.

БРОНЗА С МЫШЬЯКОМ


Исаак Ньютон пытался избавиться от хроматической аберрации, но пришел к выводу, что в линзовом телескопе-рефракторе сделать это невозможно. Будущее за зеркальными телескопами-рефлекторами, решил он. Поскольку зеркало отражает лучи всех цветов одинаково, рефлектор полностью избавлен от хроматизма. Ньютон оказался одновременно прав и неправ. Действительно, начиная с XVIII века все крупнейшие телескопы были рефлекторами, однако рефракторам еще предстоял расцвет в XIX веке.

КАК БЫЛ ИЗОБРЕТЕН ТЕЛЕСКОП

14-17 ОКТЯБРЯ 1608
Оптики Захариас Янсен и Якоб Метиус оспаривают приоритет Липперсхея, утверждая, что тоже делают такие инструменты. Причем Метиус свое устройство не показывает, а по косвенным данным это была оптическая игрушка, втайне купленная у детей Янсена. В итоге патент на изобретение никому не выдается.
НОЯБРЬ 1608
В Венеции сообщение о подзорной трубе получает теолог, политик и ученый Паоло Сарпи, друг и покровитель Галилея. Он рассылает письма с просьбой подтвердить сведения и сообщить подробности.
15 ДЕКАБРЯ 1608
H.M Липперсхей представляет парламенту бинокуляр и вскоре получает еще 300 флоринов и заказ на два таких же устройства, одно из которых предназначалось королю Франции Генриху IV, в ком голландцы видели важного союзника.
13 ФЕВРАЛЯ 1609
Липперсхей сдает два бинокуляра, получает последние 300 флоринов, и больше о нем ничего не известно.
2 АПРЕЛЯ 1609
Папский нунций в Брюсселе после охоты с нидерландским главнокомандующим Морицем Оранским описывает инструмент, через который едва различимые на горизонте башни можно рассмотреть в деталях и определить порядок их расположения.
КОНЕЦ АПРЕЛЯ 1609
В Париже изготавливают и продают 3-кратные подзорные трубы. Экземпляр подзорной трубы прислан из Брюсселя к папскому двору в Риме.

КАК БЫЛ ИЗОБРЕТЕН ТЕЛЕСКОП


Разработав хорошо полирующийся сорт бронзы с добавлением мышьяка, Ньютон в 1668 году сам изготовил рефлектор диаметром 33 миллиметра и длиной 15 сантиметров, который не уступал по возможностям метровой галилеевой трубе. За следующие 100 лет металлические зеркала рефлекторов достигли диаметра 126 сантиметров - таков был крупнейший телескоп Уильяма Гершеля с трубой длиной 12 метров, построенный на рубеже XVIII и XIX веков. Однако этот гигант, как оказалось, не превосходил по своим качествам инструменты меньшего размера. Он был слишком тяжел в обращении, а зеркало, судя по всему, не сохраняло идеальную форму из-за деформаций, вызванных перепадами температуры и собственной тяжестью.

Возрождение рефракторов началось после того, как математик Леонард Эйлер рассчитал в 1747 году конструкцию двухлинзового объектива из стекла разных сортов. Вопреки Ньютону такие объективы почти лишены хроматизма и до сих пор широко применяются в биноклях и подзорных трубах. С ними рефракторы становились гораздо привлекательнее. Во-первых, резко сокращалась длина трубы. Во-вторых, линзы были дешевле металлических зеркал - и по стоимости материала, и по сложности обработки. В-третьих, рефрактор был практически вечным инструментом, поскольку линзы не портились со временем, тогда как зеркало мутнело, и его приходилось полировать, а значит, заново придавать ему точную форму. Наконец, рефракторы были менее чувствительны к погрешностям в юстировке оптики, что было особенно важно в XIX веке, когда основные исследования велись в области астрометрии и небесной механики и требовали точных угломерных работ. Например, именно с помощью ахроматического Дерптского рефрактора диаметром 24 сантиметра Василий Яковлевич Струве, будущий директор Пулковской обсерватории, впервые измерил расстояние до звезд методом геометрического параллакса.

КАК БЫЛ ИЗОБРЕТЕН ТЕЛЕСКОП

МАЙ 1609
Четверо иезуитов, в числе которых известные ученые, знакомые с Галилеем, начинают астрономические наблюдения с доставленной в Рим подзорной трубой.
ЛЕТО 1609
Симон Мариус добывает наконец качественные линзы,собирает зрительную трубу и начинает свои астрономические наблюдения.
19 ИЮЛЯ 1609
В Венеции Галилей узнает о подзорной трубе от Паоло Сарпи.
26 ИЮЛЯ 1609
Английский ученый Томас Хэрриот наблюдает Луну в 6-кратную голландскую подзорную трубу и делает первые зарисовки ее поверхности.
КОНЕЦ ИЮЛЯ - НАЧАЛО АВГУСТА 1609
Неизвестный приезжий торговец демонстрирует подзорную трубу сначала в Падуе, потом в Венеции, где просит за нее 1000 дукатов. Галилей возвращается в Падую, разминувшись с торговцем. Паоло Сарпи отговаривает венецианских сенаторов от покупки, говоря, что Галилей сможет сделать прибор получше.
НАЧАЛО АВГУСТА 1609
Вставив две выпуклые линзы в свинцовую трубу, Галилео Галилей создает свой первый 3-кратный телескоп.
СЕРЕДИНА АВГУСТА 1609
Галилей работает над усовершенствованием телескопа.
21-26 АВГУСТА 1609
Галилей возвращается в Венецию с новым 8-кратным телескопом и с колокольни демонстрирует его возможности: паруса кораблей видны за два часа до прибытия в порт.
ОСЕНЬ 1609
Галилей конструирует новый 20-кратный телескоп. Качество очковых стекол для этого оказывается недостаточным, и он сам отрабатывает технологию шлифовки линз на специальном станке.
30 НОЯБРЯ - 18 ДЕКАБРЯ 1609
Галилей изучает Луну в новый 20-кратный телескоп.

КАК БЫЛ ИЗОБРЕТЕН ТЕЛЕСКОП


Диаметры рефракторов росли на протяжении всего XIX века, пока в 1897 году в Йоркской обсерватории не вступил в строй телескоп диаметром 102 сантиметра, и поныне крупнейший в своем классе. Попытка построить рефрактор диаметром 125 сантиметров для Парижской выставки 1900 года потерпела полное фиаско. Пригибание линз под собственной тяжестью положило предел росту рефракторов. Но и металлические рефлекторы со времен Гершеля не показывали прогресса: большие зеркала оказывались дорогими, тяжелыми и ненадежными. Так, например, не принес серьезных научных результатов построенный в 1845 году в Ирландии огромный рефлектор «Левиафан» с металлическим зеркалом диаметром 183 сантиметра. Для развития телескопостроения требовались новые технологии.

ПОДСЛЕПОВАТЫЙ ЦАРЬ-ТЕЛЕСКОП


Почву для нового рывка заложили в середине XIX века немецкий химик Юстус Либих и французский физик Жан Бернар Леон Фуко. Либих открыл метод серебрения стекла, позволяющий многократно обновлять отражающее покрытие без трудоемкой полировки, а Фуко разработал эффективный метод контроля поверхности зеркала в процессе его изготовления.
Первые крупные телескопы со стеклянными зеркалами появляются уже в 80-х годах XIX века, но все свои возможности они раскрывают в XX веке, когда американские обсерватории перехватывают лидерство у европейских. В 1908 году в обсерватории Маунт-Вилсон начинает работать 60-дюймовый (1,5 метра) рефлектор. Не проходит и 10 лет, как рядом с ним возводится 100-дюймовый (2,54 метра) телескоп Хукера-тот самый, на котором Эдвин Хаббл впоследствии измерил расстояния до соседних галактик и, сопоставив их со спектрами, вывел свой знаменитый космологический закон. А когда в 1948 году в обсерватории Маунт-Паломар вводится в строй огромный инструмент с 5-метровым параболическим зеркалом, многие специалисты считают его размер предельно возможным. Более крупное зеркало станет гнуться под собственной тяжестью при поворотах инструмента или попросту окажется слишком тяжелым, чтобы смонтировать его на подвижном инструменте.

И все же Советский Союз решает перегнать Америку и в 1975 году строит рекордный Большой телескоп альт-азимутальный (БТА) с 6-метровым сферическим зеркалом толщиной 65 сантиметров. Это было весьма авантюрное предприятие, если учесть, что крупнейший советский телескоп того времени имел диаметр лишь 2,6 метра. Проект едва не закончился полным провалом. Качество изображения у нового гиганта оказалось не выше, чем у 2-метрового инструмента. Поэтому три года спустя главное зеркало пришлось заменить новым, после чего качество изображения заметно выросло, но все равно уступало паломарскому телескопу. Американские астрономы посмеивались над этой гигантоманией: у русских есть царь-колокол, который не звонит, царь-пушка, которая не стреляет, и царь-телескоп, который не видит.

ФАСЕТОЧНЫЕ ГЛАЗА ЗЕМЛИ


Опыт БТА довольно характерен для истории телескопостроения. Всякий раз, когда инструменты подходили к пределу возможностей определенной технологии, кто-то безуспешно пытался пойти чуть дальше, ничего принципиально не меняя. Вспомните парижский рефрактор и рефлектор «Левиафан». Для преодоления 5-метрового рубежа требовались новые подходы, но, располагая формально крупнейшим телескопом в мире, в СССР уже не стали их развивать.
Первая из революционно новых технологий была опробована в 1979 году, когда в Аризоне заработал многозеркальный телескоп Уиппла (Fred Lawrence Whipple Multiple Mirror Telescope, MMT). На общей монтировке было установлено сразу шесть относительно небольших телескопов диаметром 1,8 метра каждый. Компьютер контролировал их взаимное расположение и сводил все шесть пучков собранного света в общий фокус. В результате получался инструмент, эквивалентный 4,5-метровому телескопу по светособирающей площади и 6,5-метровому по разрешающей способности.
Давно замечено, что стоимость телескопа с монолитным зеркалом растет примерно как куб его диаметра. Значит, собрав большой инструмент из шести маленьких, можно сэкономить от половины до трех четвертей стоимости и одновременно избежать колоссальных технических трудностей и рисков, связанных с изготовлением одного огромного объектива. Работа первого многозеркального телескопа не была беспроблемной, точность сведения пучков периодически оказывалась недостаточной, но отработанная на нем технология стала впоследствии широко применяться. Достаточно сказать, что она использована в нынешнем мировом рекордсмене - Большом бинокулярном телескопе (Large Binocular Telescope, LBT), состоящем из двух 8,4-метровых инструментов, установленных на одной монтировке.

КАК БЫЛ ИЗОБРЕТЕН ТЕЛЕСКОП

ДЕКАБРЬ 1609 - МАРТ 1610
Галилей изготавливает около десятка телескопов по заказам высоких духовных и светских персон. Иногда отправляются только пара линз и инструкция по их установке. За это время изготовлено около 300 линз, но лишь несколько десятков из них оказались достаточно качественными и пошли в дело. Телескопы Галилея - самые совершенные для своего времени, но продает он их только своим покровителям, а не конкурентам - астрономам и оптикам. Вежливый отказ получает даже император Рудольф II, при дворе которого работает большой поклонник Галилея - астроном Иоганн Кеплер.
7 ЯНВАРЯ 1610
Галилей открывает четыре спутника Юпитера и называет их звездами Медичи в честь своего будущего патрона герцога Тосканского. Впоследствии, однако, их стали называть галилеевыми спутниками, а имена каждому из них в отдельности дал Симон Мариус, который оспаривал у Галилея приоритет наблюдения Юпитера в телескоп.
13 МАРТА 1610
Выходит из печати «Звездный вестник» - книга, в которой Галилей излагает свои астрономические открытия, но не раскрывает детали конструкции и изготовления телескопа.

Анализируя хронологию появления и распространения телескопа, историк Энджел Слуитер из Университета Калифорнии в Беркли еще в 1997 году усомнился в том, что Галилей узнал о подзорной трубе лишь в июле 1609-го, как он сам пишет об этом в «Звездном вестнике». Информация о голландском изобретении быстро и широко распространялась по Европе с октября 1608 года. В том же году ее получил близкий друг Галилея, Паоло Сарпи. Через несколько месяцев прибор доставляют ученым-иезуитам в Риме, с которыми Галилей состоял в переписке. Наконец, рекомендация Сарпи не приобретать подзорную трубу у заезжего торговца, а подождать, пока Галилей сделает получше, плохо стыкуется с утверждением, будто сам Галилей только что узнал о существовании оптического прибора. Да и его быстрый успех в воспроизведении и совершенствовании голландской трубы наводит на мысль, что он знал о ней гораздо раньше, но по каким-то причинам ему было нежелательно об этом сообщать.

КАК БЫЛ ИЗОБРЕТЕН ТЕЛЕСКОП


Есть и другая многозеркальная технология, в которой одно большое зеркало составляется из множества пригнанных друг к другу сегментов, обычно шестиугольной формы. Она хороша для телескопов со сферическими зеркалами, поскольку в этом случае все сегменты оказываются совершенно одинаковыми и их можно изготавливать буквально на конвейере. Например, в телескопе Хобби-Эберли, а также в его копии - Большом Южно-Африканском телескопе (SALT) сферические зеркала размером 11x9,8 метра составлены из 91 сегмента - на сегодня это рекордная величина. Зеркала 10-метровых телескопов Кека на Гавайях, возглавлявших рейтинг крупнейших телескопов мира с 1993 по 2007 год, тоже многосегментные: каждое составлено из 36 шестиугольных фрагментов. Так что сегодня Земля вглядывается в космос фасеточными глазами.

ОТ ЖЕСТКОСТИ К УПРАВЛЯЕМОСТИ


Как стало ясно из упоминания о Большом бинокулярном телескопе, перешагнуть 6-метровый барьер удалось и цельным зеркалам. Для этого надо было просто перестать полагаться на жесткость материала и поручить поддержание формы зеркала компьютеру. Тонкое (10-15 сантиметров) зеркало укладывается тыльной стороной на десятки или даже сотни подвижных опор - актуаторов. Их положение регулируется с нано-метровой точностью так, чтобы при всех тепловых и упругих напряжениях, возникающих в зеркале, его форма не отклонялась от расчетной. Впервые такая активная оптика был опробована в 1988 году на небольшом Северном оптическом телескопе (Nordic Optical Telescope, 2,56 метра), а еще через год - в Чили на Телескопе новых технологий (New Technology Telescope, NTT, 3,6 метра). Оба инструмента принадлежат Европейскому Союзу, который, обкатав на них активную оптику, применил ее для создания своего главного наблюдательного ресурса - системы VLT (Very Large Telescope, Очень большой телескоп), четверки 8-метровых телескопов, установленных в Чили.
Консорциум американских университетов, объединенных в проекте «Магеллан», также использовал активную оптику при создании двух телескопов, носящих имена астронома Вальтера Бааде и филантропа Ландона Клея. Особенность этих инструментов - рекордно короткое фокусное расстояние главного зеркала: всего на четверть больше диаметра, составляющего 6,5 метра. Зеркало толщиной около 10 сантиметров отливали во вращающейся печи, чтобы, застывая, оно под действием центробежных сил само приняло форму параболоида. Внутри заготовка была армирована специальной решеткой, контролирующей тепловые деформации, а тыльной стороной зеркало опирается на систему из 104 актуаторов, поддерживающих правильность его формы при любых поворотах телескопа.

А в рамках проекта «Магеллан» уже началось создание гигантского многозеркального телескопа, в котором будет семь зеркал, каждое диаметром 8,4 метра. Собирая свет в общий фокус, они будут эквивалентны по площади зеркалу диаметром 22 метра, а по разрешению - 25-метровому телескопу. Интересно, что шесть зеркал, располагаемых, по проекту, вокруг центрального, будут иметь асимметричную параболическую форму, чтобы собирать свет на оптической оси, проходящей заметно в стороне от самих зеркал. По планам этот Гигантский телескоп (Giant Magellan Telescope, GMT) должен войти в строй к 2018 году. Но весьма вероятно, что к тому времени он уже не будет рекордным.
Дело в том, что другой консорциум американских и канадских университетов работает над проектом 30-метрового телескопа (Thirty Meter Telescope, ТМТ) с объективом из 492 шестиугольных зеркал размером 1,4 метра каждое. Его ввод в строй также ожидается в 2018 году. Но опередить всех может еще более амбициозный проект по созданию Европейского чрезвычайно большого телескопа (European Extremely Large Telescope, E-ELT) диаметром 42 метра. Предполагается, что его зеркало будет состоять из тысячи шестиугольных сегментов размером 1,4 метра и толщиной 5 сантиметров. Форма их будет поддерживаться системой активной оптики. И, конечно, такой инструмент просто лишен смысла без адаптивной оптики, компенсирующей турбулентность атмосферы. Зато с ее использованием он будет вполне способен непосредственно исследовать планеты у других звезд. Финансирование работ по этому проекту было одобрено Европейским союзом в 2009 году, после того как был отвергнут слишком рискованный проект OWL (Overwhelmingly Large Telescope, Ошеломляюще большой телескоп), предполагавший создание сразу 100-метрового телескопа. В самом деле, пока просто непонятно, не столкнутся ли создатели столь крупных установок с новыми принципиальными проблемами, которые не удастся преодолеть на существующем уровне технологий. Как-никак вся история телескопостроения говорит о том, что рост инструментов должен быть постепенным.

Трудно сказать, кто первый изобрел телескоп. Известно, что еще древние употребляли увеличительные стекла. Дошла до нас и легенда о том, что якобы Юлий Цезарь во время набега на Британию с берегов Галлии рассматривал в подзорную трубу туманную британскую землю. Роджер Бэкон, один из наиболее замечательных ученых и мыслителей XIII века, в одном из своих трактатов утверждал, что он изобрел такую комбинацию линз, с помощью которой отдаленные предметы при рассматривании их кажутся близкими.

Так ли это было в действительности - неизвестно. Бесспорно, однако, что в самом начале XVII века в Голландии почти одновременно об изобретении подзорной трубы заявили три оптика - Липперсгей, Мециус и Янсен. Рассказывают, что будто бы дети одного из оптиков, играя с линзами, случайно расположили две из них так, что далекая колокольня вдруг показалась близкой. Как бы там ни было, к концу 1608 года первые подзорные трубы были изготовлены и слухи об этих новых оптических инструментах быстро распространились по Европе.

В Падуе в это время уже пользовался широкой известностью Галилео Галилей, профессор местного университета, красноречивый оратор и страстный сторонник учения Коперника. Услышав о новом оптическом инструменте, Галилей решил собственноручно построить подзорную трубу. Сам он рассказывает об этом так:

«Месяцев десять тому назад стало известно, что некий фламандец построил перспективу, при помощи которой видимые предметы, далеко расположенные от глаз, становятся отчетливо различимы, как будто они находятся вблизи. Это и было причиной, по которой я обратился к изысканию оснований и средств для изобретения сходного инструмента. Вскоре после этого, опираясь на учение о преломлении, я постиг суть дела и сначала изготовил свинцовую трубу, на концах которой я поместил два оптических стекла, оба плоских с одной стороны, с другой стороны одно стекло выпукло-сферическое, другое вогнутое».

Этот первенец телескопической техники давал увеличение всего в три раза. Позже Галилею удалось построить более совершенный инструмент, увеличивающий в 30 раз. И тогда, как пишет Галилей, «оставив дела земные, я обратился к небесным».

7 января 1610 года навсегда останется памятной датой в истории человечества. Вечером этого дня Галилей впервые направил построенный им телескоп на небо. Он увидел то, что предвидеть заранее было невозможно. Луна, испещренная горами и долинами, оказалась миром, сходным хотя бы по рельефу с Землей. Планета Юпитер предстала перед глазами изумленного Галилея крошечным диском, вокруг которого обращались четыре необычные звездочки - его спутники. Картина эта в миниатюре напоминала Солнечную систему по представлениям Коперника. При наблюдениях в телескоп планета Венера оказалась похожей на маленькую Луну. Она меняла свои фазы, что свидетельствовало о ее обращении вокруг Солнца. На самом Солнце (закрыв глаза темным стеклом) Галилей увидел черные пятна, опровергнув тем самым общепринятое учение Аристотеля о «неприкосновенной чистоте небес». Эти пятна смещались по отношению к краю Солнца, из чего Галилей сделал правильный вывод о вращении Солнца вокруг оси.

В темные прозрачные ночи в поле зрения галилеевского телескопа было видно множество звезд, недоступных невооруженному глазу. Некоторые туманные пятна на ночном небе оказались скопищами слабо светящихся звезд. Великим собранием скученно расположенных звездочек оказался и Млечный Путь - беловатая, слабо светящаяся полоса, опоясывающая все небо.

Несовершенство первого телескопа помешало Галилею рассмотреть кольцо Сатурна. Вместо кольца он увидел по обе стороны Сатурна два каких-то странных придатка и в своем «Звездном вестнике» - дневнике наблюдений - Галилей был вынужден записать, что «высочайшую планету» (то есть Сатурн) он «тройною наблюдал».

Открытия Галилея положили начало телескопической астрономии . Но его телескопы (рис. 11), утвердившие окончательно новое коперниканское мировоззрение, были очень несовершенны. Уже при жизни Галилея им на смену пришли телескопы несколько иного типа. Изобретателем нового инструмента был уже знакомый нам Иоганн Кеплер. В 1611 году в трактате «Диоптрика» Кеплер дал описание телескопа, состоящего из двух двояковыпуклых линз. Сам Кеплер, будучи типичным астрономом-теоретиком, ограничился лишь описанием схемы нового телескопа, а первым, кто построил такой телескоп и употребил его для астрономических целей, был иезуит Шейнер, оппонент Галилея в их горячих спорах о природе солнечных пятен.

Рассмотрим оптические схемы и принцип действия галилеевского и кеплеровского телескопов . Линза А , обращенная к объекту наблюдения, называется объективом , а та линза В , к которой прикладывает свой глаз наблюдатель - окуляром . Если линза толще посередине, чем на краях, она называется собирательной или положительной, в противном случае - рассеивающей или отрицательной. Заметим, что в телескопе самого Галилея объективом служила плосковыпуклая линза, а окуляром - плоско-вогнутая. По существу, галилеевский телескоп был прообразом современного театрального бинокля, в котором используются двояковыпуклые и двояковогнутые линзы. В телескопе Кеплера и объектив и окуляр были положительными двояковыпуклыми линзами.


Представим себе простейшую двояковыпуклую линзу, сферические поверхности которой имеют одинаковую кривизну. Прямая, соединяющая центры этих поверхностей, называется оптической осью линзы. Если на такую линзу падают лучи, идущие параллельно оптической оси, они, преломляясь в линзе, собираются в точке оптической оси, называемой фокусом линзы. Расстояние от центра линзы до ее фокуса называют фокусным расстоянием. Нетрудно сообразить, что чем больше кривизна поверхностей собирательной линзы, тем меньше ее фокусное расстояние. В фокусе такой линзы всегда получается действительное изображение предмета.

Иначе ведут себя рассеивающие, отрицательные линзы. Падающий на них параллельно оптической оси пучок света они рассеивают и в фокусе такой линзы сходятся не сами лучи, а их продолжения. Потому рассеивающие линзы имеют, как говорят, мнимый фокус и дают мнимое изображение.

На рис. 12 показан ход лучей в галилеевском телескопе. Так как небесные светила, практически говоря, находятся «в бесконечности», то изображения их получаются в фокальной плоскости , то есть в плоскости, проходящей через фокус F и перпендикулярной к оптической оси. Между фокусом и объективом Галилей поместил рассеивающую линзу, которая давала мнимое, прямое и увеличенное изображение MN .

Главным недостатком галилеевского телескопа было очень малое поле зрения - так называют угловой поперечник кружка неба, видимого в телескоп. Из-за этого наводить телескоп на небесное светило и наблюдать его Галилею было очень трудно. По той же причине галилеевские телескопы после смерти их изобретателя в астрономии не употреблялись и их реликтом можно считать современные театральные бинокли.

В кеплеровском телескопе (см. рис. 12) изображение CD получается действительное, увеличенное и перевернутое . Последнее обстоятельство, неудобное при наблюдениях земных предметов, в астрономии несущественно - ведь в космосе нет какого-то абсолютного верха или низа, а потому небесные тела не могут быть повернутыми телескопом «вверх ногами».

Первое из двух главных преимуществ телескопа - это увеличение угла зрения, под которым мы видим небесные объекты. Как уже говорилось, человеческий глаз способен в отдельности различать две части предмета, если угловое расстояние между ними не меньше одной минуты дуги. Поэтому, например, на Луне невооруженный глаз различает лишь крупные детали, поперечник которых превышает 100 км . В благоприятных условиях, когда Солнце затянуто облачной дымкой, на его поверхности удается рассмотреть самые крупные из солнечных пятен. Никаких других подробностей невооруженный глаз на небесных телах не видит. Телескопы же увеличивают угол зрения в десятки и сотни раз.

Второе преимущество телескопа по сравнению с глазом заключается в том, что телескоп собирает гораздо больше света, чем зрачок человеческого глаза, имеющий даже в полной темноте диаметр не больше 8 мм . Очевидно, что количество света, собираемого телескопом, во столько раз больше того количества, которое собирает глаз, во сколько площадь объектива больше площади зрачка. Иначе говоря, это отношение равно отношению квадратов диаметров объектива и зрачка.

Собранный телескопом свет выходит из его окуляра концентрированным световым пучком. Наименьшее его сечение называется выходным зрачком . В сущности, выходной зрачок - это изображение объектива, создаваемое окуляром. Можно доказать, что увеличение телескопа (то есть увеличение угла зрения по сравнению с невооруженным глазом) равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра. Казалось бы, увеличивая фокусное расстояние объектива и уменьшая фокусное расстояние окуляра, можно достичь любых увеличений. Теоретически это так, но практически все выглядит иначе. Во-первых, чем больше употребляемое в телескопе увеличение, тем меньше его поле зрения. Во-вторых, с ростом увеличения становятся все заметнее движения воздуха. Неоднородные воздушные струи размазывают, портят изображение и иногда то, что видно при малых увеличениях, пропадает для больших. Наконец, чем больше увеличение, тем бледнее, тусклее изображение небесного светила (например, Луны). Иначе говоря, с ростом увеличения хотя и видно больше подробностей на Луне, Солнце и планетах, но зато уменьшается поверхностная яркость их изображений. Есть и другие препятствия, мешающие применять очень большие увеличения (например, в тысячи и в десятки тысяч раз). Приходится искать некоторый оптимум и потому даже в современных телескопах, как правило, наибольшие увеличения не превосходят нескольких сотен раз.

При создании телескопов со времен Галилея придерживаются следующего правила: выходной зрачок телескопа не должен быть больше выходного зрачка наблюдателя. Легко сообразить, что в противном случае часть света, собранного объективом, будет напрасно потеряна. Очень важной величиной, характеризующей объектив телескопа, является его относительное отверстие , то есть отношение диаметра объектива телескопа к его фокусному расстоянию. Светосилой объектива называется квадрат относительного отверстия телескопа. Чем «светосильнее» телескоп, то есть чем больше светосила его объектива, тем более яркие изображения объектов он дает. Количество же света, собираемого телескопом, зависит лишь от диаметра его объектива (но не от светосилы!). Из-за явления, именуемого в оптике дифракцией, при наблюдениях в телескопы яркие звезды кажутся небольшими дисками, окруженными несколькими концентрическими радужными кольцами. Разумеется, к настоящим дискам звезд дифракционные диски никакого отношения не имеют.

В заключение сообщим читателю основные технические данные о первых галилеевских телескопах. Меньший из них имел диаметр объектива 4 см при фокусном расстоянии 50 см (его относительное отверстие было равно 4/50 = 0,08). Он увеличивал угол зрения всего в три раза. Второй, более совершенный телескоп, с помощью которого Галилей совершил свои великие открытия, имел объектив диаметром 4,5 см при фокусном расстоянии 125 см и давал увеличение в 34 раза. При наблюдениях в этот телескоп Галилеи различал звезды до 8-й звездной величины, то есть в 6,25 раз более слабые, чем те, которые еле видит на ночном небе невооруженный глаз.

Таково было скромное начало развернувшегося позже «чемпионата» телескопов - длительной борьбы за усовершенствование этих главных астрономических инструментов.

Примечания

Цитирую по книге Б.Г. Кузнецова «Галилей», «Наука», 1964, стр. 71.

Название «телескоп» было присвоено новому инструменту по решению итальянской Академии наук.

Зеркальным телескопам - рефлекторам посвящен особый раздел.

У галилеевской трубы выходного зрачка нет.

История телескопа Телескопы Галилея В 1609, узнав об изобретении голландскими оптиками зрительной трубы, Галилей самостоятельно изготовил телескоп с плосковыпуклым объективом и плосковогнутым окуляром, который давал трехкратное увеличение. Через некоторое время им были изготовлены телескопы с 8 - и 30 -кратным увеличением. В 1609, начав наблюдения с помощью телескопа, Галилей обнаружил на Луне темные пятна, названные им морями, горы и горные цепи. 7 января 1610 открыл четыре спутника планеты Юпитер, установил, что Млечный Путь является скоплением звезд. Эти открытия описаны им в сочинении «Звездный вестник, открывающий великие и в высшей степени удивительные зрелища…» (вышел в свет 12 марта 1610).

Современные телескопы Возможности современных телескопов Первым приемником изображений в телескопе, изобретенным Галилеем в 1609 году, был глаз наблюдателя. С тех пор не только увеличились размеры телескопов, но и принципиально изменились приемники изображения. В начале ХХ века в астрономии стали употребляться фотопластинки, чувствительные в различных областях спектра. Затем были изобретены фотоэлектронные умножители (ФЭУ), электроннооптические преобразователи (ЭОП).

Современные телескопы Год Диаметр D, мм Угловое Приёмник излучения изготовления разрешение δ 1610 50 15 Глаз 1800 1200 4 Глаз 1920 2500 1, 5 Фотопластинка 1960 5000 1, 0 Фотопластинка 1980 6000 1, 0 ПЗС 2000 10000 0, 02 ПЗС

Эволюция параметров оптических телескопов В современных телескопах в качестве приемников излучения используют ПЗС-матрицы. ПЗС состоит из большого количества (1000× 1000 и более) полупроводниковых чувствительных ячеек размером в несколько микрон каждая, в которых кванты излучения освобождают заряды, накапливаемые в определенных местах – элементах изображения. Изображения обрабатываются в цифровом виде при помощи ЭВМ. Матрица должна охлаждаться до температур – 130°С. *ПЗС-матрицы -светочувствительная матрица, выполненная на основе ПЗС - «приборов с зарядовой связью» .

Устройство телескопа Телескоп любого типа имеет объектив и окуляр. Линза, обращенная к объекту наблюдения, называется Объективом, а линза, к которой прикладывает свой глаз наблюдатель – Окуляр. Может быть дополнительная лупа, которая позволяет приблизить глаз к фокальной плоскости и рассматривать изображение с меньшего расстояния, т. е. под большим углом зрения. Таким образом, телескоп можно изготовить, расположив на одной оси одна за другой две линзы - объектив и окуляр. Для наблюдений близких земных предметов суммарное расстояние фокусов должно быть увеличено. Меняя окуляры, можно получить различные увеличения при одном и том же объективе. Если линза толще посередине, чем на краях, она называется Собирающей или Положительной, в противном случае – Рассеивающей или Отрицательной.

Прямая, соединяющая центры этих поверхностей, называется Оптической осью линзы. Если на такую линзу попадают лучи, идущие параллельно оптической оси, они, преломляясь в линзе, собираются в точке оптической оси, называемой Фокусом линзы. Расстояние от центра линзы до её фокуса называют фокусным расстоянием. Чем больше кривизна поверхностей собирающей линзы, тем меньше фокусное расстояние. В фокусе такой линзы всегда получается действительное изображение предмета.

Tелескоп принято характеризовать угловым увеличением γ. В отличие от микроскопа, предметы, наблюдаемые в телескоп, всегда удалены от наблюдателя

Назначение телескопа Телескопы бывают самыми разными – оптические (общего астрофизического назначения, коронографы, телескопы для наблюдения искусственных спутников Земли), радиотелескопы, инфракрасные, нейтринные, рентгеновские. При всем своем многообразии, все телескопы, принимающие электромагнитное излучение, решают две основных задачи

Первая задача телескопа создать максимально резкое изображение и при визуальных наблюдениях увеличить угловые расстояния между объектами (звездами, галактиками и т. п.); собрать как можно больше энергии излучения; увеличить освещенность изображения объектов.

Вторая задача телескопа увеличивать угол, под которым наблюдатель видит объект. Способность увеличивать угол характеризуется увеличением телескопа. Оно равно отношению фокусных расстояний объектива и окуляра

Принцип работа телескопа Принцип работы телескопа заключается не в увеличении объектов, а в сборе света. Чем больше у него размер главного светособирающего элемента линзы или зеркала, тем больше света он собирает. Важно, что именно общее количество собранного света в конечном счете определяет уровень детализации видимого - будь то удаленный ландшафт или кольца Сатурна. Хотя увеличение, или сила для телескопа тоже важно, оно не имеет решающего значения в достижении уровня детализации.

Рефракторы Преломляющие телескопы, или рефракторы, в качестве главного светособирающего элемента используют большую линзу-объектив. Рефракторы всех моделей включают ахроматические (двухэлементные) объективные линзы - таким образом сокращается или практически устраняется ложный цвет, который влияет на получаемый образ, когда свет проходит через линзу. При создании и установке больших стеклянных линз возникает ряд трудностей; кроме того, толстые линзы поглощают слишком много света. Самый большой рефрактор в мире, имеющий объектив с линзой диаметром в 101 см, принадлежит Йеркской обсерватории.

рефлекторы Все большие астрономические телескопы представляют собой рефлекторы. Рефлекторные телескопы популярны и у любителей, поскольку они не так дороги, как рефракторы. Это отражающие телескопы, и для сбора света и формирования изображения в них используется вогнутое главное зеркало. В рефлекторах ньютоновского типа, маленькое плоское вторичное зеркало отражает свет на стенку главной трубы.

Зеркально-линзовые Зеркально-линзовые (катадиоптрические) телескопы используют как линзы, так и зеркала, за счет чего их оптическое устройство позволяет достичь великолепного качества изображения с высоким разрешением, при том, что вся конструкция состоит из очень коротких портативных оптических труб.